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Abstract. A class of games with two players, who base their actions on the results of the previous
round, is considered. These games are generalizations of the Iterated Prisoner’s Dilemma. The
best counterstrategy for player 1, given a strategy for player 2, is found by treating these games
as Markov processes. Several transitions between such best strategies are found and shown to be
akin to first-order phase transitions. The roles of a number of special strategies are elucidated. It is
shown that there is a strategy for player 2 that never loses, even if this player does not know what
kind of game is being played.

The Prisoner’s Dilemma [1] in iterated form has become the leading paradigm for the
explanation of the evolution of cooperation among selfish agents [2–4]. In the non-iterated
form of this game, two prisoners must decide independently whether to confess to a crime (that
they really committed together), although there is not enough evidence available to secure a
conviction. If both decide to keep silent (i.e. they cooperate), they must be released; if one of
them confesses (defects), he will be released and live a pleasant life as a state witness, while
the other will go to prison for a long term; if both confess, they will also both be convicted,
but their sentences will be reduced. Standard game theory [5] says that a rational, selfish agent
should always defect, but the situation changes drastically if the game is repeated many times
(Iterated Prisoner’s Dilemma, IPD). This was shown conclusively in an experimental way by
the computer tournaments organized by Axelrod [6–8], in which the ‘tit-for-tat’ strategy of
Rapaport and Chammah [1] (do exactly what the other player did in the previous round) proved
to be the most successful one. This may, however, no longer be true if spatial or ecological
considerations also play a rôle [9, 10]; see also the discussion of feature (F ) below.

For the purposes of this Letter, it is enough to define the iterated playing of a game as
follows.

(i) A game with n players consists of a sequence of elementary moves by each of the players
in turn.

(ii) A round is finished after all players have made a move. These are to be selected from a
finite number of possibilities.

(iii) The rules of the game determine the possible moves of a player; these may depend on the
moves already made in the present round as well as of the results of the previous rounds.

(iv) After each round, each player i obtains a payoff F(i), which is completely determined by
the moves of all players in the current round. If these payoffs are such that their sum over
all players is zero, the game is a zero-sum one. A nonzero-sum game can be considered
as a zero-sum one on introducing an extra player, who pays the balance of the n payoffs
of the original players.

0305-4470/00/470453+06$30.00 © 2000 IOP Publishing Ltd L453



L454 Letter to the Editor

(v) A strategy for a player is a ‘recipe’ telling this player what to do. It can be of the form ‘if
the history of the game is H (this is the set of the results of all previous rounds and of the
earlier moves of the present one), then do move s(H)’; in this case the strategy is called
pure. A mixed strategy is of the form ‘if the history is H , then use a random device to
select one of the possible rules s with probability pH(s)’. A pure strategy is the limit of
a mixed one for which pH(s) = 1 for exactly one value of s.

These definitions can still be generalized; for the case where the game consists of one
round only, a more general definition which includes the above can be found in the classic
work of von Neumann and Morgenstern [5]. In the following, the number of players is n = 2
and the history H is restricted to the results of the previous round only.

In the rest of this Letter, results on generalizations of the IPD are obtained analytically
by considering such games as Markov processes. In each round of such a generalized game,
the two players independently select one of two possible actions, which will be denoted by
‘cooperation’ and ‘defection’ as in the IPD and are assigned values 1 and 0, respectively. The
players have the result of the previous round available to base their choices on; therefore, the
probability that the outcome is given by the pair (σ1, σ2) if the result of the previous round was
(τ1, τ2) has the form of a product:

p(σ1, σ2; τ1, τ2) = p(σ1; τ1, τ2)q(σ2; τ1, τ2). (1)

After each round, player 1 receives an amount given by a fixed payoff matrix hσ1,σ2 , whereas
player 2 gets hσ2,σ1 . A strategy for player 1 consists of a set of four probabilities (p0, p1, p2, p3)

so that

p(1; τ1, τ2) = p2τ1+τ2 p(0; τ1, τ2) = 1 − p(1; τ1, τ2) (2)

holds. Since player 2 sees the game from the opposite perspective, her strategy (q0, q1, q2, q3)

translates to

q(1; τ1, τ2) = q2τ2+τ1 q(0; τ1, τ2) = 1 − q(1; τ1, τ2). (3)

Such a game corresponds to the IPD if one has h0,1 > h1,1 > h0,0 > h1,0; see the
discussion about the possible rewards and punishments of the two prisoners described above.
For more technical reasons, one also has to choose h0,1 + h1,0 < 2h1,1 [11]. Other variants are
known under several suggestive names [11]: for Deadlock one has h0,1 > h0,0 > h1,1 > h1,0,
for Chicken h0,1 > h1,1 > h1,0 > h0,0 and for Stag Hunt h1,1 > h0,1 > h0,0 > h1,0. It will
turn out that a comparison of the relative efficiencies of two strategies depends only on the sign
of the difference h0,1 − h1,0. In all of the examples above, this is positive; such games will
be called IPD-type games since they all imply a dilemma. For games with h0,1 − h1,0 < 0,
this is not the case; such games are called COOP-type games. These are related to associated
IPD-type games by a symmetry, as will be shown below.

As noted before, the probabilities of equation (1) only depend on the results of the previous
round, so that the iterated playing of games of this type can be described by a Markov process.
Let Pσ1,σ2(g1, g2, k) be the probability that the kth round has the result (σ1, σ2) and that the
players have accumulated g1 and g2 as total payoffs. The master equation for these probabilities
reads

Pσ1,σ2(g1, g2, k) =
∑
τ1,τ2

p(σ1, σ2; τ1, τ2)Pτ1,τ2(g1 − hσ1,σ2 , g2 − hσ2,σ1 , k − 1). (4)

The matrix of probabilities has the following explicit form in terms of the strategies of the two
players; see equations (1)–(3):


(1 − p0)(1 − q0) (1 − p1)(1 − q2) (1 − p2)(1 − q1) (1 − p3)(1 − q3)

(1 − p0)q0 (1 − p1)q2 (1 − p2)q1 (1 − p3)q3

p0(1 − q0) p1(1 − q2) p2(1 − q1) p3(1 − q3)

p0q0 p1q2 p2q1 p3q3


 . (5)
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Summing equation (4) over all gains g1 and g2 gives

Qσ1,σ2(k) ≡
∑
g1,g2

Pσ1,σ2(g1, g2, k) =
∑
τ1,τ2

p(σ1, σ2; τ1, τ2)Qτ1,τ2(k − 1). (6)

The average gains G1(k) and G2(k) for the two players are obtained by multiplying equation (4)
by g1 and g2, respectively, and summing over all variables:

G1(k) = G1(k − 1) +
∑
σ1,σ2

hσ1,σ2Qσ1,σ2(k)

G2(k) = G2(k − 1) +
∑
σ1,σ2

hσ2,σ1Qσ1,σ2(k).
(7)

In the limit of k → ∞, it is expected (by ergodicity) that the Qσ1,σ2(k) can be replaced by an
eigenvector of the matrix of equation (5) with eigenvalue equal to 1. It will be assumed that
this eigenvector, denoted by Qσ1,σ2 , is nondegenerate. The quantity w defined by

w = lim
k→∞

[G1(k) − G2(k)]/[k(h0,1 − h1,0)] = Q0,1 − Q1,0 (8)

is then a measure of the difference between the efficiencies of the strategies of the two players.
The larger it is (its possible values are −1 � w � 1), the more efficient is player 1’s strategy
as compared to that of player 2. This is the case if h0,1 > h1,0 holds, i.e. in games of the IPD
type (see the discussion above). For games of the COOP type, the terms on the right-hand side
of equation (8) have to be exchanged. A general symmetry follows from the structure of the
matrix of equation (5) and from (8).

(i) The COOP-type game obtained from an IPD-type game by exchanging h1,0 and h0,1 is
called its associate game.

(ii) Let a game of IPD-type and strategies (p0, p1, p2, p3) and (q0, q1, q2, q3) lead to a specific
value of w. Then the associate COOP-type game with strategies (1−p3, 1−p2, 1−p1, 1−
p0) and (1 − q3, 1 − q2, 1 − q1, 1 − q0) leads to the same value of (a properly defined) w.
This is due to the fact that this symmetry transforms the matrix M(i, j), i, j ∈ {0, 1, 2, 3},
of equation (5) into M(3 − i, 3 − j), so that its transformed eigenvector with eigenvalue
1 has Q0,1 and Q1,0 exchanged.

Due to this symmetry, only IPD-type games, for which equation (8) is correct as it stands, have
to be considered.

The possible values of a strategy fill a four-dimensional hypercube. The best
counterstrategies for player 1, i.e. those for which w is maximal given a fixed strategy
for player 2, have been obtained analytically from the eigenvector Qσ1,σ2 of the matrix of
equation (5) for the eight diagonals of the hypercube of the strategies of player 2. The results
are listed in table 1. An explicit expression for the quantity Q0,1 − Q1,0 has been obtained by
computer algebra; this has been used to write a program to obtain the optimal strategies for
player 1 if the strategy of player 2 does not lie on one of these diagonals.

A number of salient features of the results listed in table 1 or obtained numerically
elsewhere in the hypercube will be discussed in the following; these features are listed in
the last column of this table.

(A) The first striking feature of table 1 is the predominance of the strategy (0, 0, 0, 0) for
player 1. This means that this player always defects, independent of the outcome of the
previous round. It is known as the ALL-D strategy. Indeed, if a strategy for player 2 is
picked at random inside the hypercube, a numerical check for the best strategy of player 1
turns out to be ALL-D in about 95% of all cases. This is somewhat surprising at first
sight, since it seems to corroborate the single-game analysis of the Prisoner’s Dilemma.
The special roles of other strategies will become clearer in the following.
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Table 1. Best counterstrategies for player 1 if player 2 plays a strategy on one of the eight diagonals
of the hypercube of probabilities.

Diagonal Values Best for player 1 w Type

(r, r, r, r) r = 0 (0, p1, p2 < 1, p3) 0 (B)
0 < r < 1 (0, 0, 0, 0) r (A)
r = 1 (p0, 0, p2, p3 < 1) 1 (C)

(1 − r, r, r, r) 0 � r � 1
4 (

√
17 − 1) (0, 0, 0, 0) 1

2 (A)
1
4 (

√
17 − 1) < r < 1 (1, 0, 0, 0) r2/(2 − r) (E)

r = 1 (p0, 0, p2, p3 < 1) 1 (C)

(r, 1 − r, r, r) 0 � r < 1 (0, 0, 0, 0) r (A)
r = 1 (p0, 0, p2, p3 < 1) 1 (C)

(r, r, 1 − r, r) r = 0 (0, p1, p2 < 1, p3) 0 (B)
0 < r � 1 (0, 0, 0, 0) 1

2 (A)

(r, r, r, 1 − r) r = 0 (0, p1, p2 < 1, p3) 0 (B)
0 < r � 1 (0, 0, 0, 0) r (A)

(1 − r, 1 − r, r, r) 0 � r � 1 (0, 0, 0, 0) 1
2 (A)

(1 − r, r, 1 − r, r) 0 � r < 1 (0, 0, 0, 0) 1 − r (A)
r = 1 (p0, p1, p2, p3) 0 (D)

(1 − r, r, r, 1 − r) 0 � r � 1
4 (

√
5 + 1) (0, 0, 0, 0) 1

2 (A)
1
4 (

√
5 + 1) < r � 1 (1, 0, 0, 1) r(2r − 1) (F)

(B) There are three pure strategies for player 2:

(1) (0, 0, 0, 0) (ALL-D again, but now for player 2),
(2) (0, 0, 1, 0) (player 2 cooperates only if player 1 defected and she herself cooperated

in the previous round, see equation (3)),
(3) (0, 0, 0, 1) (player 2 cooperates only if both players cooperated in the previous round),

where w is given by

w = w1 = −p0/(1 − p2 + p0). (9)

Here the strategy to be adopted by player 1 does not depend on p1 and p3, but p0 = 0 is
necessary in order not to lose. This limit should, however, not be performed with p2 set
to 1, since then w1 = −1 follows instead of w1 = 0.

(C) Similarly, at the pure strategies:

(1) (1, 1, 1, 1) (this is the ‘always cooperate’ strategy known as ALL-C for player 2),
(2) (0, 1, 1, 1) (player 2 defects only if both defected in the previous round),
(3) (1, 0, 1, 1) (player 2 defects only if player 1 cooperated and she herself defected in

the previous round),

where w is given as

w = w2 = (1 − p3)/(1 + p1 − p3) (10)

and the best strategy for player 1 has w2 = 1 for p1 = 0, where this limit has to taken
with p3 < 1, else w2 = 0 results.
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Figure 1. The best counterstrategies for the strategies of player 2 of the form (1 − r, r, r, s). The
thin broken lines are the diagonals of features (E) and (F) above with the transition points B and
C, respectively. The phase boundaries are the following: A1C, s = (2 − 3r2)/(1 − r); A2C,
s = (r2 − 7r + 5)/(1 − r); A3C, s = 1

6 [3r + 2 − √
33r2 − 48r + 28]. These are indistinguishable

from straight lines in this figure.

(D) If player 2 plays the stategy (0, 1, 0, 1), which corresponds to ‘tit-for-tat’ (TFT) or ‘do
exactly what player 1 did in the previous round’, the strategy of player 1 is immaterial: w

is always equal to 0 in this case.

Away from the pure strategies, there are two pockets where a strategy different from ALL-
D is the best for player 1. In both cases there are transitions from ALL-D to these other
strategies on the diagonals:

(E) On the diagonal (1− r, r, r, r), there is a range of values for which the strategy (1, 0, 0, 0)

(only cooperate if both players defected in the previous round; this will be called CBD
from now on) is superior to ALL-D for player 1, although player 2 uses a mixed strategy.

(F) Similarly, there is a range of values on the diagonal (1 − r, r, r, 1 − r) where the strategy
(1, 0, 0, 1) (cooperate only if the players made the same choice in the previous round),
known as Pavlov or PAV, is the best one for player 1. Interestingly, this is the strategy that
outperforms TFT in a situation where mutation and natural selection play a rôle [10].

In both of the cases (E) and (F), the derivative of w with respect to r is discontinuous
at the transition from ALL-D, so these transitions are akin to first-order phase transitions.
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The strategies CBD and PAV extend from the diagonals to encompass finite volumes of the
hypercube. Therefore, this consists of about 95% of ALL-D, the remaining 5% being occupied
by CBD and PAV. Other strategies only occur as best ones at the corners of the hypercube:
these are the cases (B), (C) and (D) above. There is also a transition (again of first-order type)
between regions where CBD or PAV is the best counterstrategy. In figure 1, this is shown in
the plane (1 − r, r, r, s), which contains both of the diagonals of cases (E) and (F).

Up to now, the games have always been considered from the point of view of player 1.
How about player 2? What strategy should she use in order not to lose to player 1, who always
picks the best counterstrategy? From table 1, the strategies with w = 0 are the sought-for
ones: (0, 0, 0, 0) (or ALL-D), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) and (0, 1, 0, 1) (or TFT) will
all guarantee that player 2 does not lose. If the game is not of the IPD but of the COOP type,
the symmetry found above gives (1, 1, 1, 1) (or ALL-C), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)

and (0, 1, 0, 1) (or TFT again) as solutions. Therefore, even if player 2 does not know what
kind of game is being played or if player 1 changes the rules (i.e. the payoff matrix) as he goes
along, there simply is no way to lose for player 2 if she sticks to the TFT strategy. This result
shows the unique position of this strategy very clearly.

In conclusion, it has been shown that the best strategy for player 1 of a class of games which
generalize the Iterated Prisoner’s Dilemma is either ALL-D (always defect), CBD (cooperate
only if both players defected in the previous round) or PAV (cooperate only if both players
chose the same action in the previous round), except at special corners of the hypercube of
strategies of player 2. This player, on the other hand, cannot lose if she plays the TFT strategy
(always do what the other player did in the previous round), even if the payoff matrix of the
game is unknown or changes with time. The iterated playing of this type of game is a dynamic
process, so these results are not easily compared with those obtained for single game playing,
where the best pair of strategies is such that none of the players can improve his or her payoff
(this is called a Nash equilibrium [12]). Actually, the usefulness of this concept in economics is
hampered by the difficulty of describing the dynamics necessary to reach such an equilibrium.

I wish to thank R J Moraal for a number of useful discussions.

References

[1] Rapaport A and Chammah A M 1965 Prisoner’s Dilemma (Ann Arbor, MI: University of Michigan Press)
[2] Smith J M 1982 Evolution and the Theory of Games (Cambridge: Cambridge University Press)
[3] Dawkins R 1988 The Selfish Gene (Oxford: Oxford University Press)
[4] Sigmund K 1993 Games of Life (Oxford: Oxford University Press)
[5] Von Neumann J and Morgenstern O 1944 Theory of Games and Economic Behavior (Princeton, NJ: Princeton

University Press)
[6] Axelrod R 1984 The Evolution of Cooperation (New York: Basic Books)
[7] Axelrod R and Hamilton W D 1981 Science 211 1390
[8] Axelrod R and Dion D 1988 Science 242 1385
[9] Nowak M and May R M 1992 Nature 359 826

[10] Nowak M and Sigmund K 1993 Nature 364 56
[11] Flake G W 1998 The Computational Beauty of Nature (Cambridge, MA: MIT Press)
[12] Nash J F 1951 Ann. Math. 54 286


